Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Clin Kidney J ; 16(2): 272-284, 2023 Feb.
Article En | MEDLINE | ID: mdl-36751625

Background: Angiotensin-converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the kidneys. Beyond serving as a crucial endogenous regulator of the renin-angiotensin system, ACE2 also possess a unique function to facilitate amino acid absorption. Our observational study sought to explore the relationship between urine ACE2 (uACE2) and renal outcomes in coronavirus disease 2019 (COVID-19). Methods: In a cohort of 104 patients with COVID-19 without acute kidney injury (AKI), 43 patients with COVID-19-mediated AKI and 36 non-COVID-19 controls, we measured uACE2, urine tumour necrosis factor receptors I and II (uTNF-RI and uTNF-RII) and neutrophil gelatinase-associated lipocalin (uNGAL). We also assessed ACE2 staining in autopsy kidney samples and generated a propensity score-matched subgroup of patients to perform a targeted urine metabolomic study to describe the characteristic signature of COVID-19. Results: uACE2 is increased in patients with COVID-19 and further increased in those that developed AKI. After adjusting uACE2 levels for age, sex and previous comorbidities, increased uACE2 was independently associated with a >3-fold higher risk of developing AKI [odds ratio 3.05 (95% confidence interval 1.23‒7.58), P = .017]. Increased uACE2 corresponded to a tubular loss of ACE2 in kidney sections and strongly correlated with uTNF-RI and uTNF-RII. Urine quantitative metabolome analysis revealed an increased excretion of essential amino acids in patients with COVID-19, including leucine, isoleucine, tryptophan and phenylalanine. Additionally, a strong correlation was observed between urine amino acids and uACE2. Conclusions: Elevated uACE2 is related to AKI in patients with COVID-19. The loss of tubular ACE2 during SARS-CoV-2 infection demonstrates a potential link between aminoaciduria and proximal tubular injury.

2.
Am J Physiol Heart Circ Physiol ; 323(6): H1262-H1269, 2022 12 01.
Article En | MEDLINE | ID: mdl-36367689

Myocardial pathologies resulting from SARS-CoV-2 infections are consistently rising with mounting case rates and reinfections; however, the precise global burden is largely unknown and will have an unprecedented impact. Understanding the mechanisms of COVID-19-mediated cardiac injury is essential toward the development of cardioprotective agents that are urgently needed. Assessing novel therapeutic strategies to tackle COVID-19 necessitates an animal model that recapitulates human disease. Here, we sought to compare SARS-CoV-2-infected animals with patients with COVID-19 to identify common mechanisms of cardiac injury. Two-month-old hamsters were infected with either the ancestral (D614) or Delta variant (B.1.617.2) of SARS-CoV-2 for 2 days, 7 days, and/or 14 days. We measured viral RNA and cytokine expression at the earlier time points to capture the initial stages of infection in the lung and heart. We assessed myocardial angiotensin-converting enzyme 2 (ACE2), the entry receptor for the SARS-CoV-2 virus, and cardioprotective enzyme, as well as markers for inflammatory cell infiltration in the hamster hearts at days 7 and 14. In parallel, human hearts were stained for ACE2, viral nucleocapsid, and inflammatory cells. Indeed, we identify myocardial ACE2 downregulation and myeloid cell burden as common events in both hamsters and humans infected with SARS-CoV-2, and we propose targeting downstream ACE2 downregulation as a therapeutic avenue that warrants clinical investigation.NEW & NOTEWORTHY Cardiac manifestations of COVID-19 in humans are mirrored in the SARS-CoV-2 hamster model, recapitulating myocardial damage, ACE2 downregulation, and a consistent pattern of immune cell infiltration independent of viral dose and variant. Therefore, the hamster model is a valid approach to study therapeutic strategies for COVID-19-related heart disease.


Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Humans , Cricetinae , Infant , SARS-CoV-2 , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Inflammation
4.
J Mol Cell Cardiol ; 164: 13-16, 2022 03.
Article En | MEDLINE | ID: mdl-34774871

Aged males disproportionately succumb to increased COVID-19 severity, hospitalization, and mortality compared to females. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2) facilitate SARS-CoV-2 viral entry and may have sexually dimorphic regulation. As viral load dictates disease severity, we investigated the expression, protein levels, and activity of ACE2 and TMPRSS2. Our data reveal that aged males have elevated ACE2 in both mice and humans across organs. We report the first comparative study comprehensively investigating the impact of sex and age in murine and human levels of ACE2 and TMPRSS2, to begin to elucidate the sex bias in COVID-19 severity.


Aging/metabolism , Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/epidemiology , Gene Expression Regulation, Enzymologic , Receptors, Virus/biosynthesis , SARS-CoV-2/physiology , Sex Characteristics , Aging/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Disease Susceptibility , Female , Heart/virology , Humans , Intestine, Small/enzymology , Intestine, Small/virology , Kidney/enzymology , Kidney/virology , Lung/enzymology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocardium/enzymology , Organ Specificity , Receptors, Virus/genetics , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Young Adult
5.
Hypertension ; 79(2): 365-378, 2022 02.
Article En | MEDLINE | ID: mdl-34844421

ACE (angiotensin-converting enzyme)-2 as the target for SARS-CoV-2 also negatively regulates the renin-angiotensin system. Pathological activation of ADAM17 (A disintegrin and metalloproteinase-17) may potentiate inflammation and diminish ACE2-mediated tissue protection through proteolytic shedding, contributing to SARS-CoV-2 pathogenesis. We aim to examine plasma soluble ACE2 and angiotensin profiles in relation to outcomes by enrolling consecutive patients admitted for COVID-19 with baseline blood collection at admission and repeated sampling at 7 days. The primary outcome was 90-day mortality, and secondary outcomes were the incidence of end-organ injuries. Overall, 242 patients were included, the median age was 63 (52-74) years, 155 (64.0%) were men, and 57 (23.6%) patients reached the primary end point. Baseline soluble ACE2 was elevated in COVID-19 but was not associated with disease severity or mortality. In contrast, an upward trajectory of soluble ACE2 at repeat sampling was independently associated with an elevated risk of mortality and incidence of acute myocardial injury and circulatory shock. Similarly, an increase in soluble tumor necrosis factor receptor levels was also associated with adverse outcomes. Plasma Ang I, Ang 1-7 (angiotensin 1-7) levels, and the Ang 1-7/Ang II (angiotensin II) ratio were elevated during SARS-CoV-2 infection related to downregulation of ACE activity at baseline. Moreover, patients having an upward trajectory of soluble ACE2 were characterized by an imbalance in the Ang 1-7/Ang II ratio. The observed dysregulation of ACE2 and angiotensin peptides with disease progression suggest a potential role of ADAM17 inhibition and enhancing the beneficial Ang 1-7/Mas axis to improve outcomes against SARS-CoV-2 infection.


Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Renin-Angiotensin System/physiology , SARS-CoV-2 , ADAM17 Protein/blood , Aged , COVID-19/mortality , COVID-19/therapy , Enzyme Activation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Receptors, Tumor Necrosis Factor, Type I/blood , Receptors, Tumor Necrosis Factor, Type II/blood , Respiration, Artificial , Risk , Treatment Outcome
6.
RSC Med Chem ; 12(8): 1402-1413, 2021 Aug 18.
Article En | MEDLINE | ID: mdl-34458742

High blood pressure and consequential cardiovascular diseases are among the top causes of death worldwide. The apelinergic (APJ) system has emerged as a promising target for the treatment of cardiovascular issues, especially prevention of ischemia reperfusion (IR) injury after a heart attack or stroke. However, rapid degradation of the endogenous apelin peptides in vivo limits their use as therapeutic agents. Here, we study the effects of simple homologue substitutions, i.e. incorporation of non-canonical amino acids l-cyclohexylalanine (l-Cha) and l-homoarginine (l-hArg), on the proteolytic stability of pyr-1-apelin-13 and apelin-17 analogues. The modified 13-mers display up to 40 times longer plasma half-life than native apelin-13 and in preliminary in vivo assay show moderate blood pressure-lowering effects. The corresponding apelin-17 analogues show pronounced blood pressure-lowering effects and up to a 340-fold increase in plasma half-life compared to the native apelin-17 isoforms, suggesting their potential use in the design of metabolically stable apelin analogues to prevent IR injury.

7.
J Med Chem ; 63(20): 12073-12082, 2020 10 22.
Article En | MEDLINE | ID: mdl-33001648

Apelin is an important contributor to the renin-angiotensin axis, regulating cardiovascular, metabolic, and neurological functions. Apelin-17 has especially potent cardio-physiological effects but is rapidly degraded in human blood (t0.5 ∼ 4 min). Angiotensin-converting enzyme 2 (ACE-2), neprilysin (NEP), and plasma kallikrein (KLKB1) cleave and inactivate it, with the latter cutting within the arginine-arginine site. Here, we show that analogues with an N-terminal polyethylene glycol (PEG) extension as well as peptide bond isosteres resist KLKB1 cleavage but that only the PEG-extended analogues significantly improve physiologically activity. The PEGylated analogues feature comparatively high log D7.4 values and high plasma protein binding, adding to their stability. An alanine scan of apelin-17 reveals that the integrity and conformational flexibility of the KFRR motif are necessary for cardio-physiological activity. An optimized Cbz-PEG6 analogue is presented that is stable in blood (t0.5 ∼ 18 h), has significant blood-pressure lowering effect, and shows fast recovery of heart function in Langendorff assay.


Apelin/chemistry , Polyethylene Glycols/chemistry , Protective Agents/chemistry , Apelin/analogs & derivatives , Humans , Molecular Conformation , Stereoisomerism
8.
Clin Sci (Lond) ; 134(17): 2319-2336, 2020 09 18.
Article En | MEDLINE | ID: mdl-32901821

The apelinergic system is widely expressed and acts through autocrine and paracrine signaling to exert protective effects, including vasodilatory, metabolic, and inotropic effects on the cardiovascular (CV) system. The apelin pathway's dominant physiological role has delineated therapeutic implications for coronary artery disease, heart failure (HF), aortic aneurysm, pulmonary arterial hypertension (PAH), and transplant vasculopathy. Apelin peptides interact with the renin-angiotensin system (RAS) by promoting angiotensin converting enzyme 2 (ACE2) transcription leading to increased ACE2 protein and activity while also antagonizing the effects of angiotensin II (Ang II). Apelin modulation of the RAS by increasing ACE2 action is limited due to its rapid degradation by proteases, including ACE2, neprilysin (NEP), and kallikrein. Apelin peptides are hence tightly regulated in a negative feedback manner by ACE2. Plasma apelin levels are suppressed in pathological conditions, but its diagnostic and prognostic utility requires further clinical exploration. Enhancing the beneficial actions of apelin peptides and ACE2 axes while complementing existing pharmacological blockade of detrimental pathways is an exciting pathway for developing new therapies. In this review, we highlight the interaction between the apelin and ACE2 systems, discuss their pathophysiological roles and potential for treating a wide array of CV diseases (CVDs).


Angiotensin-Converting Enzyme 2/metabolism , Apelin/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular System/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/blood , Animals , Apelin/chemistry , Apelin/therapeutic use , Cardiovascular Diseases/blood , Cardiovascular System/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Humans , Renin-Angiotensin System
11.
Circ Res ; 126(10): 1456-1474, 2020 05 08.
Article En | MEDLINE | ID: mdl-32264791

ACE2 (angiotensin-converting enzyme 2) has a multiplicity of physiological roles that revolve around its trivalent function: a negative regulator of the renin-angiotensin system, facilitator of amino acid transport, and the severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-CoV-2 receptor. ACE2 is widely expressed, including, in the lungs, cardiovascular system, gut, kidneys, central nervous system, and adipose tissue. ACE2 has recently been identified as the SARS-CoV-2 receptor, the infective agent responsible for coronavirus disease 2019, providing a critical link between immunity, inflammation, ACE2, and cardiovascular disease. Although sharing a close evolutionary relationship with SARS-CoV, the receptor-binding domain of SARS-CoV-2 differs in several key amino acid residues, allowing for stronger binding affinity with the human ACE2 receptor, which may account for the greater pathogenicity of SARS-CoV-2. The loss of ACE2 function following binding by SARS-CoV-2 is driven by endocytosis and activation of proteolytic cleavage and processing. The ACE2 system is a critical protective pathway against heart failure with reduced and preserved ejection fraction including, myocardial infarction and hypertension, and against lung disease and diabetes mellitus. The control of gut dysbiosis and vascular permeability by ACE2 has emerged as an essential mechanism of pulmonary hypertension and diabetic cardiovascular complications. Recombinant ACE2, gene-delivery of Ace2, Ang 1-7 analogs, and Mas receptor agonists enhance ACE2 action and serve as potential therapies for disease conditions associated with an activated renin-angiotensin system. rhACE2 (recombinant human ACE2) has completed clinical trials and efficiently lowered or increased plasma angiotensin II and angiotensin 1-7 levels, respectively. Our review summarizes the progress over the past 20 years, highlighting the critical role of ACE2 as the novel SARS-CoV-2 receptor and as the negative regulator of the renin-angiotensin system, together with implications for the coronavirus disease 2019 pandemic and associated cardiovascular diseases.


Betacoronavirus/physiology , Cardiovascular Diseases , Coronavirus Infections , Pandemics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral , Renin-Angiotensin System/physiology , ADAM17 Protein/physiology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Diabetes Complications/metabolism , Diabetes Complications/physiopathology , Humans , Molecular Targeted Therapy , Pneumonia, Viral/complications , Pneumonia, Viral/metabolism , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Receptors, Virus/physiology , SARS-CoV-2 , Virus Attachment , COVID-19 Drug Treatment
...